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ABSTRACT

Spatial Pyramid Matching (SPM) has been proven a simple
but effective extension to bag-of-visual-words image repre-
sentation for spatial layout information compensation. SPM
describes image in coarse-to-fine scale by partitioning the im-
age into blocks over multiple levels and the features extracted
from each block are concatenated into a long vector represen-
tation. Based on the assumption that images from the same
class have similar spatial configurations, SPM matches the
blocks from different images according to their spatial layout,
by aligning all blocks from an image in a fixed spatial order.
However, target objects may appear at any location in the im-
age with various backgrounds. Therefore, the fixed spatial
matching in SPM fails to match similar objects located dif-
ferent locations. To solve this problem, we propose an effec-
tive and efficient block matching method, Semantic-Spatial
Matching (SSM). In this method, not only the spatial layout
but also the semantic content is considered for block match-
ing. The experiments on two benchmark image classification
datasets demonstrate the effectiveness of SSM.

Index Terms— Spatial matching, image classification,
bag-of-visual-words, semantic space

1. INTRODUCTION

Visual representation of images plays a fundamental role in
image classification. In recent years, local feature represen-
tation has shown its superiority due to its robustness to back-
grounds, occlusions, etc. Bag-of-visual-words (BOVW) [1]
model has been widely used for local feature image represen-
tation and has demonstrated promising performance in many
applications [2, 3, 4]. In BOVW, a visual codebook is con-
structed first by clustering a set of local descriptors, such as
SIFT [5], extracted from a training image set. Then by quan-
tizing all the local descriptors into the visual words in the
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Fig. 1. Illustration of 3-level SPM image representation.

codebook, each image can be represented as a histogram of
the visual words count.

Although BOVW has shown its success and popularity,
one big issue is that it represents an image as an orderless dis-
tribution of local features, which ignores the spatial layout of
local features completely. Therefore, many efforts have been
made to capture the spatial information, for example, com-
puting visual word correlation [6], conducting spatial pyra-
mid matching (SPM) [3] and spatial pooling [7, 8], bundling
visual words in MSER regions [9, 10], and identifying visual
phrases [11, 12], etc. With the advantages of simplicity and
efficiency, SPM has drawn a lot of attentions and has been
widely applied in many applications.

SPM describes an image in coarse-to-fine scale by parti-
tioning the images into blocks over multiple levels and the
features extracted from each block are concatenated into a
long vector representation, as illustrated in Fig. 1. The under-
line assumption is that images from the same class have sim-
ilar spatial configurations. Based on this assumption, when
the vectors from blocks are concatenated, they are aligned ac-
cording to their spatial locations in the image. In other words,
the blocks from different images are spatially matched.

The assumption in SPM maybe works in certain situation,
for example, the scene classification investigated in [3]. How-
ever, it is not true for real Web images which have rich and
complex content. Fig. 2 shows several sample images from



Fig. 2. Sample images from the “potted plant” category in VOC
Challenge 2011 dataset. It shows that the target “potted plant” may
locate at various positions. In other words, they are not spatially
matched between different images.

the “potted plant” category in the PASCAL VOC Challenge
2011 [13], which consists of images collected from Flickr.
The target object “potted plant” may occur at any location in
the image with various backgrounds. In this case, if we sim-
ply apply SPM to concatenate the histograms from all blocks
in a fixed spatial order, false matching problem will arise.
Here we take a toy example for further illustration. In Fig.
3, there are two images A and B, both containing four ob-
jects. But these objects’ locations in A and B are different.
For simplicity, we only take the Level 1 of SPM as an ex-
ample. In SPM, the features extracted from four blocks are
concatenated along a fixed spatial space order (from upper-
left to upper-right and from bottom-left to bottom-right). As
shown in Fig. 3, we find that although images A and B are
very similar, their feature vectors derived from SPM are to-
tally different. Obviously, such fixed spatial space matching
in SPM cannot match similar objects located in different lo-
cations in images.

The major reason why SPM fails is that it doesn’t take the
blocks’ content into consideration. Two blocks from different
images should be matched mainly because they have simi-
lar content (semantic matching), not just because they have
same locations (upper-left, for example) in the images (spa-
tial matching). Inspired by this, we propose a new match-
ing method, Semantic-Spatial Matching (SSM), which con-
siders not only the spatial layout, but also the blocks’ content
information. To conduct the semantic matching efficiently,
SSM constructs a unified semantic space and all blocks are
mapped into this space for alignment. For spatial matching,
the sophisticated SPM is directly applied. Then, the seman-
tic matching and spatial matching are fused via linear kernel
combination to derive SSM. SSM has the advantage of high
efficiency, simple implementation, and robust to rotation, flip-
ping, translation variances.

The rest of this paper is organized as follows. In Section
2, the related works are briefly introduced. SSM is described
in Section 3. In Section 4, experimental results are reported,
followed by the conclusion in Section 5.
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Fig. 3. Illustration of spatial matching on images A and B. Images
A and B have similar content, but the SPM feature vectors are dis-
similar.

2. RELATED WORK

To recover the spatial information ignored in BoVW repre-
sentation, many methods have been proposed. The popu-
lar SPM [3] solves this problem by partitioning images into
coarse-to-fine sub-blocks and concatenating the histograms
extracted from all blocks. In SPM, the images are partitioned
into non-overlapped blocks with equal size. Cao et al. [8]
proposed spatial-bag-of-features to extend SPM by introduc-
ing two different ways for image partition. The first one is
linear ordered bag-of-features, in which image is partitioned
into straps along a line with an arbitrary angle. The sec-
ond one is circular ordered bag-of-features, in which a center
point is given and then the image is evenly divided into sev-
eral sectors with the same radian. By enumerating different
line angles (ranging from 0◦ to 360◦) and center locations,
a family of linear and circular ordered bag-of-features can
be obtained. Spatial-bag-of-features still concatenates fea-
tures from divided blocks/straps/sectors in a fixed spatial or-
der. The difference between SPM and spatial-bag-of-features
is the way they partition the images. The additional problem
of spatial-bag-of-feature is that it needs enumerating a huge
number of possible line angles and center locations, there-
fore resulting in an extremely high dimensional histogram
representation for an image, which suffers from high com-
putational cost in real-time application. Li et al. [7] also pro-
posed several spatial pooling methods, including spatial pyra-
mid ring, reordered SPM, and relative SPM, dealing with the
rotation, flipping, and translation variance respectively. Spa-
tial pyramid ring partitions the image into concentric rings on
the polar coordinate, while relative SPM partitions the image
in a similar way as SPM but adjusts the partitioning center
along with the objects’ positions. In reordered SPM, the im-
age is partitioned exactly the same as that in SPM, but the
visual words are ordered based on their frequency in differ-
ent regions. Again, those methods still belong to the spatial
matching category, i.e., partitioning images into sub-regions
in different ways and then concatenating their features in a
fixed spatial order. Xu et al. [14] proposed spatially aligned
pyramid matching method for near duplicate image identifi-



cation. In this method, it partitions images into blocks and
examines the optimal block matching between any two-image
pair by using Earth Mover Distance [15]. This method lacks
unified matching order for all images to derive a general vi-
sual representation, and has the drawback of high computa-
tional cost.

3. SEMANTIC-SPATIAL MATCHING

In spatial matching, each image is partitioned into a set of
sub-regions (blocks/straps/sectors/rings). The key problem is
how to match regions from different images correctly. One
straightforward solution is to compare all regions from dif-
ferent images pair-wisely and find the best match via certain
optimization criteria [14]. For example, the pair-wise region
matching result of the toy example (Fig. 3) is given in Fig. 4.
However, such pair-wise matching approach has the follow-
ing drawbacks. First, it is time consuming since all regions
need to be compared pair-wisely and a complex programming
problem needs to be solved. Second, it lacks unified matching
order, therefore suffering the problem that images cannot be
represented by a common feature vector for further applica-
tions. Third, the matching is not perfectly “one versus one”.
For a region in one image, there may not exist any matched re-
gion in other images, or may have multiple regions matched.
It is not easy to deal with the “multiple versus multiple” re-
gion matching problem.

To solve these problems, we propose a new matching
method, named semantic matching (SM). In this method, we
construct a unified semantic space and all regions are mapped
into this space for alignment. This method is very easy for
implementation and highly efficient.

Semantic Space Construction: The key step in SM is
the semantic space construction. We achieve this by cluster-
ing all regions into groups, and each cluster center represents
one semantic subspace. Specifically, given a set of images,
each image is partitioned into sub-regions, as done in SPM.
Let R = {r1, r2, · · · , rN} be the set of all regions obtained,
where ri ∈ RD is the feature vector (region histogram) of the
i-th region. We apply the K-means clustering algorithm to
construct the semantic space by solving the following prob-
lem,

min
S

∑N

i=1
( min
k=1,··· ,K

||ri − sk||2), (1)

where S = {s1, s2, · · · , sK} is the set of the K cluster centers
obtained, which represents the semantic space. sk represents
the k-th semantic subspace.

Semantic Matching: With the constructed semantic
space S, each region can be assigned a semantic label by find-
ing its nearest neighbor in S. Regions from different images
are defined as matched if they have the same semantic label.
Instead of conducting the pair-wise region matching via se-
mantic labels, we can define a fixed semantic order (for exam-
ple s1 → s2 →, · · · ,→ sK) and all regions from an image
can be aligned according to this order.
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Fig. 4. The ideal region matching between images A and B.

Mathematically, given an image I, it is first partitioned
into M regions, RI = {r1, r2, · · · , rM}, where ri ∈ RD is
the feature vector (region histogram) of the i-th region. Each
ri is mapped to a semantic subspace by finding its nearest
neighbor in S. If sk is the nearest neighbor of ri, we call the
semantic label of ri is sk, denoted as ri ∈ sk. When all the re-
gions in RI have been assigned their corresponding semantic
labels, these regions are aligned and their histograms are con-
catenated in a fixed semantic order (s1 → s2 →, · · · ,→ sK).
The final concatenated representation of image I is,

VI(SM) = [rT
s1 , r

T
s2 , · · · , rT

sK
]T (2)

where rsk
=

∑
i,ri∈sk

ri is the sum of regions’ histograms
with the same semantic label sk. If there is no region labeled
as sk, rsk

is a D-dimensional vector with all elements as 0.
SM first classifies the regions into different semantic

classes via simple 1-NN, and then all regions are aligned in a
fixed semantic order. Since SM matches regions according to
their semantic content information, it can handle the rotation,
flipping, and translation problem well. Besides, by control-
ling the number of semantic labels K, i.e. |S|, we can get
semantic spaces in different granularity. A small K leads to a
coarse partition of the semantic space, while a large K leads to
a fine partitioned one. With this granularity control, SM has
strong tolerance to noise. For example, in our toy example, if
we set K = 4, the resulting SM representation is the ideal case
as illustrated in Fig. 4. If we set K = 3, the results are illus-
trated in Fig. 5. Here, the obtained semantic space S consists
of three semantic labels {“ring”, “cross”, and “arow”} since
the two similar “cross” objects are clustered into the same se-
mantic class.

Semantic-Spatial Matching: Spatial matching methods
[3, 7, 8] divide an image into a set of regions and align their
feature histograms along fixed spatial order. Semantic match-
ing aligns regions from an image along a pre-defined seman-
tic order. It is natural to combine these two complementary
models together and generate a Semantic-Spatial Matching
(SSM). Semantic matching can be combined with any spa-
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Fig. 5. Illustration of the Semantic Matching.

tial matching method [3, 7, 8]. Here we take SPM [3] as an
example for its popularity.

For SPM and SM combination, the most straightforward
way is to concatenate the SPM and SM feature vectors into a
long one,

VI = [VI(SPM)T , VI(SM)T ]T (3)
where VI(SPM) is the feature vector derived from SPM. Due
to the popularity of kernel based methods in classification
and in order to control the independent influence of SPM and
SM, we adopt a general combination model, i.e., linear kernel
combination,

KSSM (Ii, Ij) = αKSM (Ii, Ij) + (1− α)KSPM (Ii, Ij) (4)

where KSM (Ii, Ij) = K(VIi
(SM), VIj

(SM)), KSPM (Ii, Ij)
= K(VIi(SPM), VIj (SPM)), and α ∈ [0, 1] is the combina-
tion coefficient for controlling their effects. Various kernels
(Linear, Radial Basis Function, Polynomial) can be adopted
here. Eq.(3) is a special case when the linear kernel is adopted
with certain α.

Space and Time Complexity Analysis: The semantic
space construction in SSM is conducted via K-means clus-
tering. It has the time complexity of O(LKND) and space
complexity of O((N+K)D), where K is the number of clus-
ters, L is number of iterations, N is the number of training
regions, and D is the dimension of region’s feature vectors.
It should be noted that the semantic space can be constructed
offline and only needs to be learned once. For the online SM
feature generation, the only computational cost is to find the
semantic label for each region, which is very fast (O(KD)).
For the storage cost, once the semantic space is trained, we
only need to record K clustering centers with space complex-
ity of O(KD). Therefore, SSM extends SPM with very little
additional computational and storage cost.

4. EXPERIMENTS

4.1. Experiments on VOC 2011

4.1.1. Experimental Setting

We conduct extensive experiments to test our proposed SSM
method on two benchmark image classification datasets. The
first testing dataset is VOC 2011 [13]. It contains 14961
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Fig. 6. Example images of the VOC2011 database.

Table 1. mAP comparison on VOC2011
Algorithm mAP(%)

BoVW 28.93

R-SPM 30.42

SPM 37.69

SSM 40.79

images from 20 categories and the average image size is
500×375. Fig. 6 shows some example images of this dataset.
This dataset is quite challenging. It covers diverse object cat-
egories and the images have very complex content, as shown
in Fig. 2 of “potted plant”.

We follow the standard experiment setup for VOC2011,
i.e., 5717 images for training and 5823 images for testing. For
the local feature, scale-invariant feature transform (SIFT) [5]
is extracted from each image on a dense grid. The codebook
size is 600. We adopt the linear kernel SVM [3] due to its ef-
ficiency. We train SVM [2, 16] classification models for each
category on the training set and report the classification per-
formance on the testing set in terms of the non-interpolated
average precision (AP) [13, 17, 18, 19]. We compare the pro-
posed model with spatial pyramid matching (SPM) [3] and
recently proposed reordered SPM (R-SPM) [7].

4.1.2. Experimental Results

The mAP, average of AP over all 20 categories, is reported
in Table 1. It shows that both spatial matching methods, R-
SPM and SPM, can improve the baseline BoVW to some ex-
tent, that validates the advantage of taking spatial layout in-
formation into consideration. The SSM method outperforms
both R-SPM and SPM. It demonstrates the effectiveness of
the combination of semantic and spatial information. We also
investigate the effectiveness of SSM on each category. Fig. 7
shows the AP on each category as well as mAP. From Fig. 7,
we can see that SSM performs the best on 19 categories, and
only suffers a slight AP decrease from SPM in the category
“Sheep”. Overall, it outperforms R-SPM and SPM stably.

In SSM, there are two important parameters, i.e., the com-
bination coefficient α and the semantic space size K. We have
conducted a series of experiments to investigate the sensitiv-
ity of SSM to them. The combination coefficient α in Eq. (4)
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Fig. 7. The performance comparison of BoVW, R-SPM, SPM, and SSM on each object category.
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Fig. 8. The performance of SSM with different α.

controls the influence of SM and SPM, reflecting the impor-
tance of semantic and spatial matching. In the special case,
when α = 0, SSM degrades to SPM, and when α = 1, SSM
degrades to SM. We vary α from 0 to 1 with interval 0.1, and
the results are plotted in Fig. 8. It shows that SSM achieves
the best performance at α = 0.5 which implies that semantic
matching and spatial matching are equally important.

To investigate the effects of semantic space size K, i.e., the
number of clusters in K-means for constructing the semantic
space, we test various Ks, from 8 to 128, as shown in Fig. 9.
As discussed in Section 3, K controls the granularity of the
semantic space. When K is too small, the semantic space has
low discriminative power of distinguishing different regions,
causing regions with different content falling into the same
semantic subspace. When K is too large, the semantic space
is over-split and thus it has little robustness to noise, transla-
tions or other variances. From the experiments, we find that a
moderate K = 48 is a good choice.

4.2. Experiments on 15 Scene

4.2.1. Experimental Setting

We also test our algorithm on the 15 Scene dataset [20, 21].
This dataset consists of 4485 images from fifteen scene cat-
egories, varying from bedroom and coast to store and moun-
tain. The number of images in each category ranges from 200
to 400. The average image size is 300×250 pixels. Fig. 10
shows some example images of this dataset.
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Fig. 9. The performance of SSM with different semantic space size
K.
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Fig. 10. Example images of the 15 Scene dataset

We follow the same experimental setting as in Lazebnik
et al. [3] and Yang et al. [2]. We randomly select 100 images
from each class for training and apply the linear kernel SVM
for multi-class classification. The codebook size is 400. The
random sampling process is repeated 10 times, and the aver-
age classification rate and standard deviation are reported.

4.2.2. Experimental Results

The experimental results on 15 scene dataset are given in Ta-
ble 2. Classification rate shows the percentage of the im-
ages which are correctly classified. It is found that both SPM
and SSM outperform the baseline BoVW significantly. Com-
pared with SPM, SSM achieves limited classification accu-
racy improvement. This dataset has been well investigated in
[3] and SPM is demonstrated working well on it, since the
scene categories generally satisfy the similar spatial config-



Table 2. Classification rate (%) on 15 Scene
Algorithm Classification Rate (%)

BoVW 43.51 ± 0.96

SPM 76.62 ± 0.78

SSM 77.02 ± 0.82

Table 3. Mean Average Precision (%) on 15 Scene
Algorithm mAP (%)

BoVW 32.75 ± 0.55

SPM 78.86 ± 0.53

SSM 80.11 ± 0.57

urations assumption. Even though, the combined SSM still
outperforms SPM. It demonstrates that the semantic match-
ing also makes important contribution in scene classification.
We further compare these state-of-the-arts in terms of AP on
15 scenes and report their mAPs in Table 3. We can find that
SSM achieves 1.25% AP improvement over SPM.

5. CONCLUSION

In this paper, we propose a new matching method, Semantic-
Spatial Matching (SSM). SSM conducts region matching by
considering both the spatial layout and the semantic content
information. SSM has the advantage not only being robust to
rotation, flipping and other variances, but also simple and easy
for implementation. Experiments on two benchmark datasets
demonstrate its effectiveness in object and scene classifica-
tions.
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